
Pythia Reloaded: An Intelligent Unit Testing-Based Code
Grader for Education

Sébastien Combéfis
École Centrale des Arts et Métiers

Promenade de l’Alma 50
1200 Woluwé-Saint-Lambert, Belgium

s.combefis@ecam.be

Alexis Paques
Computer Science and IT in Education ASBL

1348 Louvain-la-Neuve, Belgium
alexis.paques@csited.be

ABSTRACT
Automatic assessment of code to support education is an
important feature of many programming learning platforms.
Unit testing frameworks can be used to perform a systematic
functional test of codes; they are mainly used by developers.
Competition graders can be used to safely execute code in
sandboxed environments; they are mainly used for program-
ming contests. This paper proposes a platform combining
the advantages of unit testing and competition graders to
provide a unit testing-based grader. The proposed platform
assesses codes and produces relevant and “intelligent” feed-
backs to support learning. The paper presents the architec-
ture of the platform and how the unit tests are designed.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education; D.2.5 [Software Engineering]:
Testing and Debugging—Testing tools; D.2.3 [Software En-
gineering]: Coding Tools and Techniques

General Terms
Verification, Measurement, Security

Keywords
Code grader, Unit testing, Education

1. INTRODUCTION
Automatic assessment of codes has become a very demanded
feature for many programming learning platforms [6]. This
demand recently increased with the apparition of Massive
Open Online Courses (MOOCs), for which it is not possible
to handle code assessments by hand, especially due to the
massive character of MOOCs [3].

This paper proposes a platform that can automatically grade
codes, so that the grading, and in particular the gener-
ated feedback, is suited for education and help learners.

The proposed platform, which has previously been proto-
typed [4], has been completely rewritten and released as an
open-source project available at the following address: http:
//www.pythia-project.org/. Pythia has already been used
to support university courses, as well as for a MOOC [3].

1.1 Motivation
Two major kinds of code assessment tools exist: unit testing
frameworks and competition graders. Unit testing frame-
works, available for most programming languages, are used
to perform functional tests on given programs. Competition
graders are used to execute code in sandboxes and add con-
straints such as the maximal amounts of memory and exe-
cution time that can be used for the execution of the graded
programs. Moreover, competition graders must guarantee
uniform conditions for all the executed tests, since they are
used to establish rankings for competitions.

When it comes to codes assessment for educational purposes,
neither classical unit testing frameworks nor competition
graders are suitable. The main lack of unit testing frame-
works is that they output a report only stating which tests
succeeded or failed, with the inputs and the produced and
expected outputs. Whereas such reports are useful for de-
velopers, it is not a suitable feedback for learners. Another
issue is related to the safe execution of learners’ codes. Com-
petitions graders are isolating the execution into sandboxes.
Any malicious code, or unintentionally dangerous code such
as an infinite loop, for example, will therefore be isolated
and will not compromise the grading platform. The main
issue with competition graders is that they are very specific
to satisfy the constraints they have to meet. Therefore, they
often only support a single programming language.

These observations motivated the development of Pythia [4],
a platform that combines a unit testing framework with
a competition grader. The idea taken from competition
graders is the isolated sandbox for the safe execution of code.
The unit testing framework brings a systematic way to test
codes produced by the learners. In addition to those two
elements, an “intelligent” feedback system has been added
to the platform to make it supporting learning.

1.2 Related Work
Other platforms using concepts from unit testing have been
developed to support education. Code Hunt [2] asks its
learners to correct a code given the results of unit tests
of the code. It therefore works in the reverse way, com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

CHESE’15, July 14, 2015, Baltimore, MD, USA
ACM. 978-1-4503-3711-3/15/07
http://dx.doi.org/10.1145/2792404.2792407

5



pared to Pythia, which runs tests sets on a code that is
written by learners. Python Koans 1 is an interactive tuto-
rial for learning Python that requires the learner to make
tests pass in order to progress. The FW4EX framework
is very similar to Pythia and proposes a mechanised grad-
ing of code for MOOCs [7]. The main differences are the
use of heavy virtual machines and less focus on feedbacks
relevant for learning. Singh et al. proposes a method to au-
tomatically provide feedback for introductory programming
problems [8]. Their system is able to identify the minimal
correction to make to the student’s wrong code, compared
to a reference solution. Compared to Pythia, their feed-
backs are more precise and target directly the changes to
bring to the code, rather than a higher level description of
what is wrong, at the problem level. Finally, Marmoset is
a platform that provides learners with a limited access to
the teacher’s private tests to encourage them to work earlier
on their assignments [9]. A difference with Pythia is the fo-
cus of Marmoset on snapshots, making it possible to track
learners’ programming habits.

The remainder of the paper is organised as follows. Section 2
presents the architecture of the Pythia platform, and the
structure of the tasks that are executed on it. Section 3
then explains how classical unit tests have been enriched to
provide “intelligent” feedbacks to learners.

2. ARCHITECTURE
The architecture of Pythia is organised in three layers, shown
on Figure 1. The system layer is responsible of the safe ex-
ecution of jobs. The task layer structures the jobs to add
feedbacks. The problem layer adds context and input con-
straints to tasks, and organises them into problems.

Problem layer

Task layer

System layer

Figure 1: Pythia consists of three layers.

2.1 System Layer
The system layer handles the execution of jobs in a safe
environment. The architecture of this layer relies on a queue
as shown on Figure 2. The other components, namely the
pools and the front-ends, connect to the queue. The front-
ends are components communicating with the outside world
and receive execution queries. The pools are components
managing the safe execution of jobs on the machine.

As it was the case with the prototype version [4], a dispos-
able virtual machine is created by the pool component for
every job to be executed. Pythia uses User-mode Linux [5]
with a trimmed down version of ArchLinux able to boot in
under one second. New pools have to declare their existence
to the queue by connecting to it. A pool has a given capac-
ity, i.e. the number of virtual machines it can launch and
handle at the same time. Front-ends can be of very different
nature, and connect to the queue to launch the execution

1https://github.com/brainstorm/python_koans.

Front-end

Front-end

Front-end

Queue

Pool

Pool

Figure 2: The system layer relies on a central com-
ponent called queue on which other components are
connected.

of a job. The front-end provides inputs to feed the job and
receives output upon completion of the job execution.

2.2 Structure of Jobs
At the system layer, a job can be seen as a blackbox contain-
ing executable code, which receives input data and produces
output data. A job is configured with a JSON file defining
the execution environment, the task filesystem containing
the executable code and a set of constraints and limits.

Figure 3 shows the configuration file for an “hello world” job
example, in Python. The contraints and limits that can be
set are: maximum execution time (s), maximum amount of
memory (Mo), maximum disk space (Mo) and maximum
output length (number of characters).

{

"environment": "python",

"taskfs": "hello-world-python.sfs",

"limits": {

"time": 60,

"memory": 32,

"disk": 50,

"output": 1024

}

}

Figure 3: The configuration file for a job defines
the execution environment, the task filesystem, con-
straints and limits.

The task filesystem is mounted in the virtual machine when
the job is executed. It should therefore contain an exe-
cutable file which is automatically executed by Pythia. The
task filesystem is mounted on /task as a read-only filesys-
tem. If a job need to write files, it has to do it in /tmp. Fi-
nally, the entry point of a job is an executable file control

containing a sequence of commands to execute. Figure 4
shows the files contained in the task filesystem for “hello
world” example.

/task/hello.py

(a) control.

Hello World!

(b) data.txt.

#!/usr/bin/python3

with open(’/task/data.txt’, ’r’) as file:

print(file.read())

(c) hello.py.

Figure 4: The task filesystem is mounted in the vir-
tual machine and contains the code to be executed.

6



3. UNIT TESTING-BASED GRADING
Using the services offered by the system layer, the task layer
proposes several different kinds of tasks. For example, a
task can evaluate the time complexity of an algorithm by
executing it with different input sizes, and plotting the exe-
cution times with respect to the input sizes. Another kind of
task consists in running unit tests and then providing useful
feedback to help the learner to find his/her error.

As detailed in the introduction, only using unit tests is not
enough for learning purpose. It is very important to provide
relevant feedbacks to the learners, that is directly related to
the code he/she is writing and to the test case that failed.
The task layer defines the format of the input and output
received and generated by a job, for all the different offered
kinds of tasks.

3.1 Main Executable
The main executable, i.e. the control file, of a unit testing-
based task is organised as a sequence of six steps:

1. Preprocess: the preprocessing phase integrates the
snippets of code written by the learner into skeleton
files. Skeleton files are generally source code files that
contain placeholders for the snippets of code.

2. Compile: the whole program to be executed is then
compiled if the programming language used requires
such a compilation step. Any other kinds of analyses
to perform on the source code are done in this step.

3. Generate: random test sets are then generated, ac-
cording to instructions from the test configuration file.
The tests sets are saved in a file.

4. Execute: the code of the learner is then executed with
the tests sets previously generated. The produced out-
put are saved to a file, along with any additional data.

5. Postprocess: any postprocessing based on data pro-
duced in the previous steps are analysed, for example
to build a plot with measured time complexities.

6. Feedback: finally, feedbacks about the results of the
analyses of the code of the learner performed in the
previous steps are generated.

Steps 2 and 4 are language-dependent steps. Since they
involve code written by the learner, they are executed by a
restricted user inside the virtual machine who has very few
privileges. In addition to the control executable file, the
task filesystem is composed of the following directories:

• skeleton contains the skeletons files, that is, files that
contains placeholders for code snippets from the learner;

• static contains the files that do not need any changes
or treatment;

• config contains the configuration files needed by the
different execution steps described above;

• and finally, scripts contains the scripts that manage
the different execution steps described above.

3.2 Test Configuration
Creating a unit testing-based tasks do not require a lot of
code to be produced. It mainly consists in writing several
configuration files. Figure 5 shows the main configuration
file for a unit testing-based task which requires the learner
to write a function to compute the sum of two integers.
The top-most label q1 is the task identifier. Each task is
described by four elements:

• argc contains the number of arguments of the function
to be written by the learner;

• predefined is a set of predefined tests to which cus-
tomised feedback can be attached;

• random defines a set of random tests that will be au-
tomatically generated;

• and finally code contains a correct code for the func-
tion that will be used to compute the correct answers
for the tests sets.

{

"q1": {

"argc": 2,

"predefined": {

"argv": [{

"data": "(10, 5)",

"feedback": {

"10": "Have you summed the 2nd parameter?",

"5": "Have you summed the 1st parameter?"

}

}, {

"data": "(7, 15)"

}, {

"data": "(-1, 2)",

"feedback": {

"*": "Have considered negative parameter?",

}

}, {

"data": "(12, 0)"

}]

},

"random": {

"n": 10,

"args": ["int(-20,20)", "int(-20,20)"]

},

"code": "def sum(a, b):\n return a + b"

}

}

Figure 5: The configuration file for a unit testing-
based task for a function defines the number of argu-
ments, predefined and random tests and the correct
code.

The predefined tests must cover cases that will test the errors
that are more often made by learners. Those tests are asso-
ciated with specific feedback messages that help the learner
to find the error that was made. In the example above, the
first predefined test set is (10, 5). If the code of the learner
produces the erroneous output 10, he will get the following
feedback message:

“Your code failed for the input a = 10, b = 5.
The expected result is 15 and your code produced 10.
Have you summed the 2nd parameter?”

7



The random tests are used to avoid the learner to hardcode
the output for all the predefined test sets, in the code they
submitted. The configuration file specifies the number of
tests to generate and the type and ranges for each parameter.
In this example, int(-20,20) means that integer values will
be randomly picked between −20 and 20.

3.3 Job Input and Output
The input that is provided to the job is a JSON file con-
taining the task identifier, and the code snippets produced
by the learner with the associated field identifiers. Figure 6
shows an example of input for the “sum” task described in
the previous section. The task q1 asked one code snippet to
the user, identified by f1. The learner has just written the
“return a” code snippet.

{

"tid": "q1",

"fields": {

"f1": "return a"

}

}

Figure 6: Input provided to a unit testing-based task
contains the code snippets of the learner, with their
identifiers.

The output produced by the job after its execution is also
a JSON file that contains the task identifier, the execution
status and feedback information. Figure 7 shows the output
generated for the “sum” task example described above. The
status is failed, meaning that the task has not been solved
successfully. Two feedback items have been produced:

• the example item provides information about the in-
put, expected and actual output of the test that failed;

• and the message item provides an additional message.

Other possible feedback items include score and graph.

{

"tid": "q1",

"status": "failed",

"feedback": {

"example": {

"input": "(10, 5)",

"expected": "15",

"actual": "10"

},

"message": "Have you summed the 2nd parameter?"

}

}

Figure 7: Output generated by a unit testing-based
task contains feedback messages.

4. CONCLUSION
Unit testing framework is generally used by developers in
test-driven development [1], for example. However, for edu-
cational purpose, the output produced by such frameworks
is not enough. Feedbacks must be provided to the learner
when a test fails, in order to support his/her learning. Just
showing the expected output is not enough. Some kind of
“intelligent” feedbacks must be provided, relating the test
case to the function to be written and the context.

This paper proposes Pythia, an open-source platform con-
taining a unit testing-based grader specifically designed for
education. Pythia is a genuine combination of a competi-
tion grader and a unit testing framework. Pythia is more
than just a unit testing-based grader, it a a modular code
execution platform which is capable to generate “intelligent”
feedbacks to support learning of programming.

Future work includes specifying precisely and developing
new kinds of tasks with the corresponding feedback. For ex-
ample, it could be possible to implement tasks whose time
complexity, quality of code, or good application of good pro-
gramming patterns are assessed. It could also be possible to
analyse the code of learner at others levels such as analysing
a class, or evaluating whether all the allocated memory in a
C program has been freed, for example.

5. REFERENCES
[1] K. Beck and C. Andres. Extreme Programming

Explained: Embrace Change. Addison-Wesley, 2nd
edition, 2004.

[2] J. Bishop, R. N. Horspool, T. Xie, N. Tillmann, and
J. de Halleux. Code Hunt: Experience with coding
contests at scale. In Proceedings of the 37th
International Conference on Software Engineering
(ICSE 2015). ACM, May 2015.

[3] S. Combéfis, A. Bibal, and P. V. Roy. Recasting a
traditional course into a mooc by means of a spoc. In
Proceedings of the European MOOCs Stakeholders
Summit 2014 (EMOOCS 2014), pages 205–208, feb
2014.

[4] S. Combéfis and V. le Clément de Saint-Marcq.
Teaching programming and algorithm design with
pythia, a web-based learning platform. Olympiads in
Informatics, 6:31–43, 2012.

[5] J. Dike. A user-mode port of the Linux kernel. In
Proceedings of the 4th Annual Linux Showcase &
Conference. Usenix, 2000.

[6] V. Pieterse. Automated assessment of programming
assignments. In Proceedings of the 3rd Computer
Science Education Research Conference (CSERC 2013),
pages 45–56, apr 2013.

[7] C. Queinnec. An infrastucture for mechanised grading.
In Proceedings of the 2nd International Conference on
Computer Supported Education (CSEDU 2010), pages
37–45, apr 2010.

[8] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated
feedback generation for introductory programming
assignments. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2013), pages 15–26.
ACM, jun 2013.

[9] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K.
Hollingsworth, and N. Padua-Perez. Experiences with
Marmoset: Designing and using an advanced
submission and testing system for programming
courses. In Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2006), pages 13–17. ACM,
jun 2006.

8


